

Муниципальное бюджетное общеобразовательное учреждение «Средняя школа № 3» имени А.Н. Першиной» г. Енисейска

663184, г. Енисейск, Красноярский край, ул. Ленина 102 т.8 (39195)2-23-06 e-mail:mousosh_102@mail.ru

«СОГЛАСОВАНО»

на Методическом Совете протокол от 08.06.2023 протокол Notag4

«УТВЕРЖДЕНО»

Приказом директора от 09.08.2023 № 03-10-127

Тараторкина С.В.

Дополнительная общеобразовательная общеразвивающая программа технической направленности

«Робототехника»

с использованием оборудования центра «Точка Роста»

Уровень программы: «базовый»

Срок реализации: 2023 – 2024 учебный год

1 год (72 часа)

Возраст 12-14 лет (6-8 классы)

Ф.И.О. разработчиков

Осинцев Г.Н., учитель технологии

программы:

Пояснительная записка

Рабочая программа составлена в соответствии со следующими нормативно-правовыми инструктивно-методическими документами:

- Федеральный закон Российской Федерации от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации» (с изменениями на 17 февраля 2023 года) (далее Федеральный закон);
- •Концепция развития дополнительного образования детей до 2030 года (от 31 марта 2022 года № 678-р) (далее Концепция);
- •Приказ Министерства просвещения Российской Федерации т 27.07.2022 № 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам» (далее Порядок).

Реализация данной программы технической направленности предусматривает использование оборудования, средств обучения и воспитания центра «Точка роста».

Образовательная программа дополнительного образования «Робототехника (базовый уровень)» предназначена для начинающих и не требует специальных входных знаний. Занятие программы проводятся со следующими робототехническими наборами: КЛИК (DIGIS), Образовательным набором по электронике, электромеханике и микропроцессорной технике AR-DEK-STR-02, Образовательным комплектом на базе учебного манипулятора DOBOT Magician с системой технического зрения DM-EV-R2, Образовательным робототехническим комплектом «СТЕМ Мастерская» AR-RSK-WRS-02.

Робототехнический набор КЛИК предназначен для изучения основ робототехники, деталей, узлов и механизмов, необходимых для создания робототехнических устройств. Образовательный набор по электронике, электромеханике и микропроцессорной технике «Конструктор программируемых моделей инженерных систем. Расширенный набор" предназначен для занятий по электронике и схемотехнике с целью изучения наиболее распространенной элементной базы, применяемой для инженерно-технического творчества учащихся и разработки учебных моделей роботов. Набор позволяет проведение учебных занятий по изучению основ мехатроники и робототехники, практического применения базовых элементов электроники и схемотехники, а также наиболее распространенной элементной базы и основных технических решений, применяемых при проектировании и прототипировании различных инженерных, кибернетических и встраиваемых систем.

Образовательный комплект на базе учебного манипулятора DOBOT Magician с системой технического зрения содержит учебный манипулятор DOBOT Magician, представляющий собой многофункциональный настольный манипулятор с комплектом сменных рабочих инструментов, благодаря которым DOBOT Magician обладает возможностью перемещения предметов, трехмерной печати, лазерной гравировки, письма и рисования.

Образовательный набор для изучения многокомпонентных робототехнических систем и манипуляционных роботов "Образовательный робототехнический комплект Мастерская". Расширенный" предназначен для изучения основ разработки и конструирования моделей промышленных манипуляционных роботов различного типа и роботов. автономных мобильных В состав комплекта входят представляющие собой модели промышленных автоматизированных приводов со встроенной системой управления. Применение данного типа сервомодулей позволяет разрабатывать модели манипуляционных роботов с различными типами кинематической схемы, обладающих высокой точностью и динамикой движения.

Содержание программы направлено на формирование у детей начальных научнотехнических знаний, профессионально-прикладных навыков и создание условий для социального, культурного и профессионального самоопределения, творческой самореализации личности ребенка в окружающем мире.

Актуальность программы. Робототехника является перспективной областью для применения образовательных методик в процессе обучения за счет объединения в себе различных инженерных и естественнонаучных дисциплин. Программа даёт возможность обучить детей профессиональным навыкам в области робототехники и предоставляет условия для проведения педагогом профориентационной работы. Кроме того, обучение по данной программе способствует развитию творческой деятельности, конструкторскотехнологического мышления детей, приобщает их к решению конструкторских, художественно-конструкторских и технологических задач.

Особенности организации учебного процесса

Основным содержанием данной программы является постепенное усложнение занятий от технического моделирования до сборки и программированию роботов.

Обучающиеся изучают основы робототехники на базе образовательных конструкторов КЛИК, AR-DEK-STR-02, DM-EV-R2, AR-RSK-WRS-02, что даёт им возможность создавать оригинальные модели, воплощать свои самые смелые конструкторские идеи, изучать язык программирования.

Принципы построения программы:

- от простого к сложному;
- связь знаний, умений и навыков с практикой;
- научность;
- доступность;
- системность знаний;
- воспитывающая и развивающая направленность;
- активность и самостоятельность;
- учет возрастных и индивидуальных особенностей.

Курс рассчитан на обучающихся 12-15 лет.

В объединение дополнительного образования принимаются все дети, обучающиеся школы на добровольной основе, и не имеющие медицинских противопоказаний. Для занятий в кружке специальной подготовки не требуется.

Продолжительность одного академического часа - 40 минут.

Перерыв между учебными занятиями – 10 мин

Общее количество часов в неделю – 2 часа.

Объем программы – 72 часа.

Программа рассчитан на 1 год обучения

Наполняемость групп

Максимальный состав группы определяется с учетом соблюдения правил техники безопасности на учебно-тренировочных занятиях.

Количество занимающихся в группе до 10 человек.

Перечень форм обучения: фронтальная, индивидуальная, индивидуально-групповая, групповая

Перечень видов занятий: беседа, лекция, практическое занятие, мастер-класс.

Цель программы: введение в начальное инженерно – техническое конструирование и основы робототехники с использованием робототехнических образовательных конструкторов.

Задачи:

- познакомить школьников с конструктивным и аппаратным обеспечением робототехнических конструкторов;

- дать первоначальные знания о конструкции робототехнических устройств;
- научить приемам сборки и программирования с использованием робототехнических образовательных конструкторов;
- обучить проектированию, сборке и программированию устройства;
- познакомить с профессиями программист, инженер, конструктор;
- способствовать формированию творческого отношения к выполняемой работе;
- воспитывать умение работать в коллективе, эффективно распределять обязанности;
- развивать творческую инициативу и самостоятельность;
- развивать психофизиологические качества обучающихся: память, внимание, способность логически мыслить, анализировать, концентрировать внимание на главном;
- развивать умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений.

Учебный (тематический) план

Содержание курса представлено в составе четырех модулей: «Работа с Конструктором для практики блочного программирования КЛИК», «Работа с Четырехосевым учебным роботом-манипулятором», «Работа с набором для изучения многокомпонентных робототехнических систем и манипуляционных роботов».

	Название модуля	Количество часов		Формы	
		всего	теория	практи	аттестации/
				ка	контроля
1	Работа с	24	6	18	Презентация
	Конструктором для				работ,
	практики блочного				соревнование
	программирования КЛИК				
2	Работа с Четырехосевым	24	6	18	Презентация
	учебным				работ,
	роботом-манипулятором				соревнование
3	Работа с набором для	24	6	18	Презентация
	изучения многокомпонентных				работ,
	робототехнических систем и				соревнование
	манипуляционных роботов				
		72	18	54	

Модуль 1 «Работа с Конструктором для практики блочного программирования КЛИК»

Робототехнический набор предназначен для изучения основ робототехники, деталей, узлов и механизмов, необходимых для создания робототехнических устройств. Набор представляет собой комплект структурных элементов, соединительных элементов и электротехнических компонентов.

Набор позволяет проводить эксперименты по предмету физика, создавать и программировать собираемые модели, из компонентов, входящих в его состав, рабочие модели мобильных и стационарных робототехнических устройств с автоматизированным управлением, в том числе на колёсном и гусеничном ходу, а также конструкций, основанных на использовании различных видов передач (в том числе червячных и зубчатых) а также рычагов. Встроенные беспроводные сетевые решения (Wi-Fi и Bluetooth), возможность интеграции с бесплатным облачным ПО, обеспечивают возможность практического изучения технологий интернета вещей искусственного интеллекта. Обеспечивается возможность объединения нескольких роботов, собранных из подобных наборов, в группы с сетевым взаимодействием. Предусмотрена опциональная возможность расширения дополнительными компонентами (не входящими в стандартную комплектацию), позволяющими изучать техническое зрение и промышленную робототехнику. Предусмотрена возможность работы набора с дополнительными облачными сервисами.

Среды программирования: mBlock, ArduinoIDE Совместимость с ОС: Windows, Mac, Linux (web-версия mBlock)

Цель модуля: изучение образовательного конструктора КЛИК, сборка моделей роботов, практика блочного программирования.

Модуль 2 «Работа с Четырехосевым учебным роботом-манипулятором»

В состав комплекта входит:

Учебный манипулятор DOBOT Magician – 1шт

Комплектация DOBOT Magician

- 1. 4-х осевой образовательный манипулятор
- 2. Захват механический с пневматическим приводом
- 3. Захват вакуумный
- 4. Захват для пишущего инструмента
- 5. Экструдер для 3D-печати
- 6. Лазерный модуль гравировки
- 7. Пульт управления
- 8. Bluetooth-модуль
- 9. Wi-Fi-модуль
- 10. Комплект методических материалов и заданий
- 11. Универсальный робототехнический контроллер 1шт

Универсальный робототехнический контроллер представляет собой устройство, программируемое в среде Arduino IDE. Универсальный робототехнический контроллер предназначен для коммутации внешних устройств, подключаемых к системе управления учебным манипулятором DOBOT Magician.

12.Учебная «смарт»-камера – 1шт

Учебная смарт-камера - модуль технического зрения, представляющий собой вычислительное устройство со встроенным микропроцессором, интегрированной телекамерой и оптической системой. Смарт-камера применяется в рамках соревнований в области промышленной автоматизации и "Интернет вещей" в качестве одного из смарт-устройств макета производственной ячейки, выполненной на базе учебных манипуляторов.

Модуль является сенсорным устройством для исследования окружающего пространства путем обработки и анализа изображения со встроенной видеокамеры. Смарт-камера предназначена для применения с различными образовательными робототехническими комплектами и может использоваться для создания роботов, способных распознавать и анализировать объекты по ряду признаков - цвету, размеру, форме и т.д.

Учебная смарт-камера имеет встроенное программное обеспечение, позволяющее осуществлять настройку модуля технического зрения - настройку экспозиции, баланса белого, HSV составляющих, площади обнаруживаемой области изображения, округлости обнаруживаемой области изображения, положение обнаруживаемых областей относительно друг друга, машинное обучение параметров нейронных сетей для обнаружения объектов, форму и закодированные значения обнаруживаемых маркеров типа Aruco, размеры обнаруживаемых окружностей, квадратов и треугольников, параметров контрастности, размеров, кривизны и положения распознаваемых линий.

Цель модуля: изучение образовательного комплекта на базе учебного манипулятора DOBOT MAGICIAN, выполнение практических заданий с гравировкой.

Модуль 3 «Работа с набором для изучения многокомпонентных робототехнических систем и манипуляционных роботов»

Образовательный набор для изучения многокомпонентных робототехнических систем и манипуляционных роботов "Образовательный робототехнический комплект Расширенный" предназначен для изучения основ разработки и Мастерская". конструирования моделей промышленных манипуляционных роботов различного типа и автономных мобильных роботов. В состав комплекта входят сервомодули, представляющие собой модели промышленных автоматизированных приводов со встроенной системой управления. Применение данного типа сервомодулей позволяет разрабатывать модели манипуляционных роботов с различными типами кинематической схемы, обладающих высокой точностью и динамикой движения.

Образовательный набор для изучения многокомпонентных робототехнических систем и манипуляционных роботов "Образовательный робототехнический комплект "СТЕМ Мастерская". Расширенный" позволит учащимся на примере собираемых из набора манипуляционных роботов ознакомиться с основными технологическими принципами, применяемыми на современном производстве, и научиться выполнять различные технологические использованием операции c ручных инструментов специализированного оборудования. Путем использования данного комплекта в проектной деятельности и работе в команде, учащиеся изучат виды технологических операций на производстве, основы проектирования гибких производственных ячеек и разработки систем управления манипуляционными роботами. Также они узнают об инженерных профессиях и специальностях, необходимых на современном производстве и в Индустрии 4.0.

Цель модуля: изучение образовательного набора СТЕМ Мастерская, сборка и программирование манипуляционных роботов.

Тематическое планирование 1 модуля «Работа с Конструктором для практики блочного программирования КЛИК»

N ₂	Название модуля	Количество часов		
		всего	теория	практика
1	Конструктивные элементы и комплектующие конструктора КЛИК	3	1	2
2	Исполнительные механизмы конструктора КЛИК	3	1	2
3	Базовые принципы проектирования роботов. Мобильный робот	3	1	2
4	Робот-манипулятор	3	1	2
5	Сортировщик цвета	3	0,5	2,5
6	Робот Муравей	3	0,5	2,5
7	Ультразвуковой терменвокс	3	0,5	2,5
8	Копировальщик	3	0,5	2,5
	Bcero:	24	6	18

Тематическое планирование 2 модуля

«Работа с Четырехосевым учебным роботом-манипулятором»

N_2	Название модуля	Количество часов		
		всего	теория	практика
1	Знакомство с манипулятором DOBOT Мадісіап, дистанционное управление, механический захват.	3	1	2
2	Дистанционное управление DOBOT Мадісіап. Вакуумный захват. Конвейер DOBOT.	3	1	2
3	Программное обеспечение DobotStudio. Панель управления DOBOT Magician. Режим управления мышью.	3	1	2
4	Программное обеспечение DobotStudio. Графический режим.	3	1	2
5	Программное обеспечение DobotStudio. Лазерная гравировка.	3	0,5	2,5
6	Геометрические развертки. Лазерная резка в ПО DobotStudio.	3	0,5	2,5
7	Перемещение DOBOT Magician по рельсу.	3	0,5	2,5
8	Простейшее программирование в ПО DobotStudio.	3	0,5	2,5
	Всего:	24	6	18

Тематическое планирование 3 модуля «Работа с набором для изучения многокомпонентных робототехнических систем и манипуляционных роботов»

N_2	Название модуля	Количество часов		
		всего	теория	практика
1	Обзор образовательного комплекта СТЕМ Мастерская. Исполнительные механизмы.	2	2	
2	Практическая работа: Плоскопараллельный манипулятор	3	0,5	2,5
3	Практическая работа: Угловой манипулятор	4	0,5	3,5
4	Практическая работа: Манипулятор с DELTA кинематикой	5	1	4
5	Практическая работа: Пневмоконтроллер	5	1	4
6	Практическая работа: Мобильная платформа всенаправленного движения	5	1	4
	Bcero:	24	6	18

Планируемые результаты

1. Личностные результаты:

- ответственное отношение к информации с учетом правовых и этических аспектов ее распространения;
- развитие чувства личной ответственности за качество окружающей информационной среды;
- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области лего-конструирования и робототехники в условиях развивающегося общества
- готовность к повышению своего образовательного уровня;
- способность и готовность к принятию ценностей здорового образа жизни за счет знания основных гигиенических, эргономических и технических условий безопасной эксплуатации средств лего-конструирования и робототехники.

2. Метапредметные результаты:

- владение информационно-логическими умениями: определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение и делать выводы;

- владение умениями самостоятельно планировать пути достижения целей; соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия в соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственнографическую или знаково-символическую модель;
- способность и готовность к общению и сотрудничеству со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой деятельности.

3. Предметные результаты: знания, умения, владение:

Результаты теоретической подготовки обучающегося:

- знает и может объяснить:
- понятия: «технология», «технологический процесс», «механизм», «проект»,
- правила безопасной работы;
- основные компоненты образовательных конструкторов КЛИК, AR-DEK- STR-02, DM-EV-R2, AR-RSK-WRS-02;
- работу основных механизмов и передач;
- -конструктивные особенности различных моделей, сооружений и механизмов;
- виды подвижных и неподвижных соединений в конструкторе, а также:
- самостоятельно решать технические задачи в процессе конструирования роботов (планирование предстоящих действий, самоконтроль, применять полученные знания;
- осуществляет сборку моделей с помощью образовательного конструктора по инструкции,
- демонстрирует полученный опыт разработки оригинальных конструкций в заданной ситуации: нахождение вариантов, отбор решений, проектирование и конструирование, испытание, анализ, способы модернизации, альтернативные решения.
- создавать модели по разработанной схеме;
- работать в паре и коллективе, эффективно распределять обязанности;
- рассказывать о модели;
- излагать мысли в чёткой логической последовательности;
- уметь собирать роботов, используя различные датчики.

Материально-техническое обеспечение

- компьютерные столы, а также отдельные столы, для практических работ с конструктором,
- полки для хранения собранных моделей,
- компьютеры с установленным необходимым программным обеспечением;
- проектор + экран, либо интерактивная доска;
- робототехнические образовательные конструкторы КЛИК, AR-DEK-STR-02, DM-EV-R2, AR-RSK-WRS-02
- источники питания,
- МФУ.

Формы аттестации и оценочные материалы

Мониторинг результатов обучения включает в себя диагностику знаний обучающихся, их оценку в соответствии с поставленными целями обучения и корректировку ошибок.

Регулярное отслеживание результатов может стать основой стимулирования, поощрения ребенка за его труд, старание.

В ходе реализации программы существует такие способы отслеживания и оценки успеваемости учащихся как:

- 1) Сетка для записи отдельных случаев: для каждого учащегося или группы можно использовать сетку категорий наблюдения для следующих целей:
- оценка результатов обучающегося на каждом этапе процесса;
- предоставление конструктивной обратной связи для содействия развитию обучающихся;
- 2) Сетка категорий наблюдения;
- 3) Страницы документации
- 4) Утверждения для самостоятельной оценки своих знаний

Формы аттестации: опрос, контрольные занятия, соревнования, игры.